

Deep Learning for Cognitive EW with COTSChad Augustine, Product Manager, Integrated Systems

Overview

- Important Notes on information and terminology
- What is Deep Learning?
- How to apply it
- Applicable Commercial-of-the-Shelf (COTS) Hardware and Software
- The Road Ahead

Note about the information in this presentation

- All the information in this document is public
- It's all available via standard online sources (Wikipedia, Google, various "open courseware" websites, etc.)
- The goal of this presentation is to emphasize what anyone in the world can do to implement Cognitive systems using Deep Learning with COTS Hardware and Software
- The implication of that should be clear:
 - The tools are widely available
 - Page 11 explains why this is not a problem

A note about a terminology overlap with the defense industry

- Throughout this presentation, the following terms appear
 - "Classify"
 - "Classifier"
 - "Classified"
- These are fundamental terms in the theory and practice of Deep Learning
- In no place in this presentation are they used in the Defense industry context of marking and protecting information for security purposes

Basic Decision Making in a Computer: "IF – THEN"

- It's really simple logic, right? → "If there is good beer in my glass, then I will drink it."
- We can add all sorts of permutations to this:
 - Variations of good beer, different types of containers, even different ways to drink it.
 - Even add options for drinking good things that aren't beer.
- We can add "if-then" statements for everything, right?
- Isn't it just a matter of carefully taking into account <u>every single case</u>, <u>creating an exhaustive list of all combinations for every single imaginable</u> type of beer, container, drinking style..... perhaps not.
- All the craft-brews (and home-brew) beers in the world make this functionally impossible. How would you ever keep it all up to date? What does "good" mean?

Fundamentals of "Machine Learning"

- Basically "Artificial Intelligence", or better "Weak Artificial Intelligence"
 - The spam filter on your email, search engines, and your Netflix suggestions are all examples of applications of "Machine Learning"
- Machine Learning requires some sort of training, e.g. what is good email vs. spam
 - Reinforcement: Try, try again... until it does it right. Playing a game to win.
 - Supervised: teacher provides examples of input and output, guides the learning
 - Unsupervised : Free-form. Find and discover the patterns. Report back.
- Using a "classifier" to separate what <u>is</u> vs. <u>is not</u>
 - We can think of this as a "filter"

How is Deep Learning different than Machine Learning?

- Deep Learning is a type of Machine Learning, just "deeper" filtering
- It "goes deeper" by classifying via many layers or dimensions of classification
- Information is passed through many classifiers, iteratively, e.g. Beer:
 - Light or Dark?
 - Strength?
 - Wheat or hops?
 - Filter on other flavors citrus, berries, spice, etc.
- Each of these classifiers can then be trained for what is "good" and what is "bad"
- The sum of all these classifiers becomes a Deep Neural Net (DNN) which can be presented with an arbitrary input
- Based on the training, the DNN will be able to determine "good" or "bad" from that input

Why is this important?

- Deep Learning is a sophisticated way to train a computer to become a subject matter expert for a defined task, for example:
 - Arbitrary handwriting and speech recognition
 - Autonomous driving https://blogs.nvidia.com/blog/2015/02/24/deep-learning-drive/
 - Game playing (e.g. "Go" Google's deep learning system just beat the top human in the world a major task far harder than winning at chess) https://www.technologyreview.com/s/546066/googles-ai-masters-the-game-of-go-a-decade-earlier-than-expected/
 - Sophisticated information analysis (e.g. finding and associating deep patterns and connections in high complexity signals, such as art, music, finance, travel, weather, etc.)
- Deep Neural Nets can be trained in a high performance environment, then replicated on lower cost hardware
 - For example, Qualcomm efforts to put real-time DNNs for facial recognition on phones
 - https://www.qualcomm.com/news/onq/2015/03/02/qualcomm-zeroth-advancing-deep-learning-devicesvideo
 - Some top level classifier training per user as needed.

Under the hood, what's the challenge?

- Classifiers are signal filters, and signal filters involve a lot of math (multiplication and addition) in many dimensions
- Deep learning applies many classifiers across signals, and mathematically combines all of those
- The classifiers don't just work on the whole signal at once, but instead process the signal in many pieces (e.g. analyzing a small chunk of a picture at a time)
- Add up all of this, and it is a huge amount of math to perform on a signal
- For real time applications, like autonomous driving, it's a lot of math, and done really fast. And with that, a lot of storage (memory) to hold the signal and all the filtered signals (and filters of those filters, etc.) is a huge challenge.

We could not do this just a few years ago

What's changed?

- Lots and lots of cheap storage and memory allows us to hold all this data
- Graphics Processing Units (for games!) are really good at doing all this highly complex math in many dimensions (GPGPU)
- High speed interconnects and memory allow us to shove all this data in and out of the system without bottleneck
- Lots of open source software from both academia and industry (e.g. Google) for Deep Learning
- Anyone can do this. Here's a guide to build a system at home for <\$1000, all with standard parts from the consumer PC world.
 - http://timdettmers.com/2015/03/09/deep-learning-hardware-guide/

Applying to a field of interest for Cognitive capabilities

APPLICATION OF TECHNOLOGY

- What are the fundamental signals of interest? E.g. Frequencies, shapes, etc.
- Subject matter experts (humans) can design and implement classifiers appropriate to these signals
- The subject matter-specific Deep Neural Nets need to be trained by the right human SMEs in the right settings and environments (simulated and real)
- These trained DNNs can then be "cloned" and deployed, and can be updated upon additional training of the original DNN.

INTELLECTUAL PROPERTY

- The selection of signals of interest
- The design of the classifiers, and the human SME knowledge that goes into that design
- The training process, setting, the actual hardware and software system hosting the DNN to be trained
- The trained DNN itself it should be considered valuable "Intellectual Property" to be protected
- Valuable like a trained dog and the training methodology, but this dog can be cloned with training intact.

Applicable Commercial-of-the-Shelf (COTS) Hardware

Graphics Processing Units (GPGPU)

Very flexible for training and usage

Field-Programmable Gate Arrays

- Good for cloning a DNN in a less "general purpose" form that isn't expected to be used as the training system
- Good for creating sophisticated classifiers which may be highly complex or specialized

Processing, Storage, Networks

- The overall data and process infrastructure. Some light use on lower end processing cores, more use for processors in supercomputers in parallelization.
- A system of these building blocks can be scaled up or down, from small embedded systems on chip (e.g. Nvidia Tegra) to supercomputers

Applicable Commercial-of-the-Shelf (COTS) Software

Caffe — A deep learning framework specializing in image recognition.

Current March 2016 list on Wikipedia

- CNTK open source deep-learning Computational Network Toolkit by Microsoft Research.
- ConvNetJS A <u>Javascript</u> library for training deep learning models. It contains online demos.
- <u>Deeplearning4j</u> An open-source deep-learning library written for Java with LSTMs and convolutional networks. It provides parallelization with CPUs and GPUs.
- Gensim A toolkit for natural language processing implemented in the Python programming language.
- Keras deep learning framework capable of running on top of either TensorFlow or Theano.
- NVIDIA cuDNN A GPU-accelerated library of primitives for deep neural networks.
- OpenNN An open source C++ library which implements deep neural networks and provides parallelization with CPUs.
- <u>TensorFlow</u> Google's open source machine learning library in C++ and Python with APIs for both. It provides parallelization with CPUs and GPUs.
- Theano An open source machine learning library for Python.
- <u>Torch</u> An open source software library for machine learning based on the Lua programming language.
- Apache SINGA A General Distributed Deep Learning Platform.

Google is providing free online course via Udacity using TensorFlow https://www.udacity.com/course/deep-learning--ud730

Synergies with Defense Market for COTS HW and SW

The Road Ahead

Today:

Implementation on existing available hardware platforms with custom software libraries, prototypes of DL ASICs

2-3 year horizon:

Specialized Deep Learning ASICs for specific markets (e.g. phone), continued growth of software libraries, driving to standardized APIs

5 Year Vision:

Inclusion, on-die, of general purpose
Deep Learning accelerators in many
processors, with standardized APIs to
access hardware acceleration

Justification:

This has been the flow for increased capabilities in computing systems for many years

- Floating Point Processing
- Sound Processing
- Graphics Acceleration
- Physics Engines
- Video Compression / Decompression
- Currently in this cycle for VR / AR

In conclusion

Deep Learning means....

...Beer-tasting Robot Dog fetches exactly the beer we want

Application Ready COTS Systems

Single Board Computers

Storage

FPGA

Networking

GPGPUs

Software

3rd Party Hardware

Create several systems using the same basic building blocks!

Chad Augustine
Product Manager, Integrated Systems
chad.augustine@curtisswright.com
412.519.6969

Q&A

www.curtisswrightds.com